3.107 \(\int \frac {(a+b x+c x^2)^{3/2}}{(d+e x+f x^2)^2} \, dx\)

Optimal. Leaf size=704 \[ -\frac {\left (\left (e-\sqrt {e^2-4 d f}\right ) (c e-b f) \left (f (b e-2 a f)+2 c \left (e^2-5 d f\right )\right )-2 f \left (f \left (-b e (3 a f+c d)+4 a f (a f+c d)+2 b^2 d f\right )+2 c^2 d \left (e^2-4 d f\right )\right )\right ) \tanh ^{-1}\left (\frac {4 a f+2 x \left (b f-c \left (e-\sqrt {e^2-4 d f}\right )\right )-b \left (e-\sqrt {e^2-4 d f}\right )}{2 \sqrt {2} \sqrt {a+b x+c x^2} \sqrt {2 a f^2-\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}\right )}{2 \sqrt {2} f^2 \left (e^2-4 d f\right )^{3/2} \sqrt {2 a f^2-\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}+\frac {\left (\left (\sqrt {e^2-4 d f}+e\right ) (c e-b f) \left (f (b e-2 a f)+2 c \left (e^2-5 d f\right )\right )-2 f \left (f \left (-b e (3 a f+c d)+4 a f (a f+c d)+2 b^2 d f\right )+2 c^2 d \left (e^2-4 d f\right )\right )\right ) \tanh ^{-1}\left (\frac {4 a f+2 x \left (b f-c \left (\sqrt {e^2-4 d f}+e\right )\right )-b \left (\sqrt {e^2-4 d f}+e\right )}{2 \sqrt {2} \sqrt {a+b x+c x^2} \sqrt {2 a f^2+\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}\right )}{2 \sqrt {2} f^2 \left (e^2-4 d f\right )^{3/2} \sqrt {2 a f^2+\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}+\frac {c^{3/2} \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{f^2}-\frac {\sqrt {a+b x+c x^2} (-2 b f+c e-2 c f x)}{f \left (e^2-4 d f\right )}-\frac {(e+2 f x) \left (a+b x+c x^2\right )^{3/2}}{\left (e^2-4 d f\right ) \left (d+e x+f x^2\right )} \]

[Out]

-(2*f*x+e)*(c*x^2+b*x+a)^(3/2)/(-4*d*f+e^2)/(f*x^2+e*x+d)+c^(3/2)*arctanh(1/2*(2*c*x+b)/c^(1/2)/(c*x^2+b*x+a)^
(1/2))/f^2-(-2*c*f*x-2*b*f+c*e)*(c*x^2+b*x+a)^(1/2)/f/(-4*d*f+e^2)-1/4*arctanh(1/4*(4*a*f+2*x*(b*f-c*(e-(-4*d*
f+e^2)^(1/2)))-b*(e-(-4*d*f+e^2)^(1/2)))*2^(1/2)/(c*x^2+b*x+a)^(1/2)/(c*e^2-2*c*d*f-b*e*f+2*a*f^2-(-b*f+c*e)*(
-4*d*f+e^2)^(1/2))^(1/2))*(-2*f*(2*c^2*d*(-4*d*f+e^2)+f*(2*b^2*d*f+4*a*f*(a*f+c*d)-b*e*(3*a*f+c*d)))+(-b*f+c*e
)*(f*(-2*a*f+b*e)+2*c*(-5*d*f+e^2))*(e-(-4*d*f+e^2)^(1/2)))/f^2/(-4*d*f+e^2)^(3/2)*2^(1/2)/(c*e^2-2*c*d*f-b*e*
f+2*a*f^2-(-b*f+c*e)*(-4*d*f+e^2)^(1/2))^(1/2)+1/4*arctanh(1/4*(4*a*f-b*(e+(-4*d*f+e^2)^(1/2))+2*x*(b*f-c*(e+(
-4*d*f+e^2)^(1/2))))*2^(1/2)/(c*x^2+b*x+a)^(1/2)/(c*e^2-2*c*d*f-b*e*f+2*a*f^2+(-b*f+c*e)*(-4*d*f+e^2)^(1/2))^(
1/2))*(-2*f*(2*c^2*d*(-4*d*f+e^2)+f*(2*b^2*d*f+4*a*f*(a*f+c*d)-b*e*(3*a*f+c*d)))+(-b*f+c*e)*(f*(-2*a*f+b*e)+2*
c*(-5*d*f+e^2))*(e+(-4*d*f+e^2)^(1/2)))/f^2/(-4*d*f+e^2)^(3/2)*2^(1/2)/(c*e^2-2*c*d*f-b*e*f+2*a*f^2+(-b*f+c*e)
*(-4*d*f+e^2)^(1/2))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 11.95, antiderivative size = 704, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 7, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.259, Rules used = {971, 1066, 1076, 621, 206, 1032, 724} \[ -\frac {\left (\left (e-\sqrt {e^2-4 d f}\right ) (c e-b f) \left (f (b e-2 a f)+2 c \left (e^2-5 d f\right )\right )-2 f \left (f \left (-b e (3 a f+c d)+4 a f (a f+c d)+2 b^2 d f\right )+2 c^2 d \left (e^2-4 d f\right )\right )\right ) \tanh ^{-1}\left (\frac {4 a f+2 x \left (b f-c \left (e-\sqrt {e^2-4 d f}\right )\right )-b \left (e-\sqrt {e^2-4 d f}\right )}{2 \sqrt {2} \sqrt {a+b x+c x^2} \sqrt {2 a f^2-\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}\right )}{2 \sqrt {2} f^2 \left (e^2-4 d f\right )^{3/2} \sqrt {2 a f^2-\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}+\frac {\left (\left (\sqrt {e^2-4 d f}+e\right ) (c e-b f) \left (f (b e-2 a f)+2 c \left (e^2-5 d f\right )\right )-2 f \left (f \left (-b e (3 a f+c d)+4 a f (a f+c d)+2 b^2 d f\right )+2 c^2 d \left (e^2-4 d f\right )\right )\right ) \tanh ^{-1}\left (\frac {4 a f+2 x \left (b f-c \left (\sqrt {e^2-4 d f}+e\right )\right )-b \left (\sqrt {e^2-4 d f}+e\right )}{2 \sqrt {2} \sqrt {a+b x+c x^2} \sqrt {2 a f^2+\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}\right )}{2 \sqrt {2} f^2 \left (e^2-4 d f\right )^{3/2} \sqrt {2 a f^2+\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}+\frac {c^{3/2} \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{f^2}-\frac {\sqrt {a+b x+c x^2} (-2 b f+c e-2 c f x)}{f \left (e^2-4 d f\right )}-\frac {(e+2 f x) \left (a+b x+c x^2\right )^{3/2}}{\left (e^2-4 d f\right ) \left (d+e x+f x^2\right )} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x + c*x^2)^(3/2)/(d + e*x + f*x^2)^2,x]

[Out]

-(((c*e - 2*b*f - 2*c*f*x)*Sqrt[a + b*x + c*x^2])/(f*(e^2 - 4*d*f))) - ((e + 2*f*x)*(a + b*x + c*x^2)^(3/2))/(
(e^2 - 4*d*f)*(d + e*x + f*x^2)) + (c^(3/2)*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + b*x + c*x^2])])/f^2 - (((c
*e - b*f)*(f*(b*e - 2*a*f) + 2*c*(e^2 - 5*d*f))*(e - Sqrt[e^2 - 4*d*f]) - 2*f*(2*c^2*d*(e^2 - 4*d*f) + f*(2*b^
2*d*f + 4*a*f*(c*d + a*f) - b*e*(c*d + 3*a*f))))*ArcTanh[(4*a*f - b*(e - Sqrt[e^2 - 4*d*f]) + 2*(b*f - c*(e -
Sqrt[e^2 - 4*d*f]))*x)/(2*Sqrt[2]*Sqrt[c*e^2 - 2*c*d*f - b*e*f + 2*a*f^2 - (c*e - b*f)*Sqrt[e^2 - 4*d*f]]*Sqrt
[a + b*x + c*x^2])])/(2*Sqrt[2]*f^2*(e^2 - 4*d*f)^(3/2)*Sqrt[c*e^2 - 2*c*d*f - b*e*f + 2*a*f^2 - (c*e - b*f)*S
qrt[e^2 - 4*d*f]]) + (((c*e - b*f)*(f*(b*e - 2*a*f) + 2*c*(e^2 - 5*d*f))*(e + Sqrt[e^2 - 4*d*f]) - 2*f*(2*c^2*
d*(e^2 - 4*d*f) + f*(2*b^2*d*f + 4*a*f*(c*d + a*f) - b*e*(c*d + 3*a*f))))*ArcTanh[(4*a*f - b*(e + Sqrt[e^2 - 4
*d*f]) + 2*(b*f - c*(e + Sqrt[e^2 - 4*d*f]))*x)/(2*Sqrt[2]*Sqrt[c*e^2 - 2*c*d*f - b*e*f + 2*a*f^2 + (c*e - b*f
)*Sqrt[e^2 - 4*d*f]]*Sqrt[a + b*x + c*x^2])])/(2*Sqrt[2]*f^2*(e^2 - 4*d*f)^(3/2)*Sqrt[c*e^2 - 2*c*d*f - b*e*f
+ 2*a*f^2 + (c*e - b*f)*Sqrt[e^2 - 4*d*f]])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 971

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_.) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> Simp[((b +
 2*c*x)*(a + b*x + c*x^2)^(p + 1)*(d + e*x + f*x^2)^q)/((b^2 - 4*a*c)*(p + 1)), x] - Dist[1/((b^2 - 4*a*c)*(p
+ 1)), Int[(a + b*x + c*x^2)^(p + 1)*(d + e*x + f*x^2)^(q - 1)*Simp[2*c*d*(2*p + 3) + b*e*q + (2*b*f*q + 2*c*e
*(2*p + q + 3))*x + 2*c*f*(2*p + 2*q + 3)*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b^2 - 4*a*c,
0] && NeQ[e^2 - 4*d*f, 0] && LtQ[p, -1] && GtQ[q, 0] &&  !IGtQ[q, 0]

Rule 1032

Int[((g_.) + (h_.)*(x_))/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbo
l] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Dist[(2*c*g - h*(b - q))/q, Int[1/((b - q + 2*c*x)*Sqrt[d + e*x + f*x^2])
, x], x] - Dist[(2*c*g - h*(b + q))/q, Int[1/((b + q + 2*c*x)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, b,
c, d, e, f, g, h}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[e^2 - 4*d*f, 0] && PosQ[b^2 - 4*a*c]

Rule 1066

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((A_.) + (B_.)*(x_) + (C_.)*(x_)^2)*((d_) + (e_.)*(x_) + (f_.)*(x_
)^2)^(q_), x_Symbol] :> Simp[((B*c*f*(2*p + 2*q + 3) + C*(b*f*p - c*e*(2*p + q + 2)) + 2*c*C*f*(p + q + 1)*x)*
(a + b*x + c*x^2)^p*(d + e*x + f*x^2)^(q + 1))/(2*c*f^2*(p + q + 1)*(2*p + 2*q + 3)), x] - Dist[1/(2*c*f^2*(p
+ q + 1)*(2*p + 2*q + 3)), Int[(a + b*x + c*x^2)^(p - 1)*(d + e*x + f*x^2)^q*Simp[p*(b*d - a*e)*(C*(c*e - b*f)
*(q + 1) - c*(C*e - B*f)*(2*p + 2*q + 3)) + (p + q + 1)*(b^2*C*d*f*p + a*c*(C*(2*d*f - e^2*(2*p + q + 2)) + f*
(B*e - 2*A*f)*(2*p + 2*q + 3))) + (2*p*(c*d - a*f)*(C*(c*e - b*f)*(q + 1) - c*(C*e - B*f)*(2*p + 2*q + 3)) + (
p + q + 1)*(C*e*f*p*(b^2 - 4*a*c) - b*c*(C*(e^2 - 4*d*f)*(2*p + q + 2) + f*(2*C*d - B*e + 2*A*f)*(2*p + 2*q +
3))))*x + (p*(c*e - b*f)*(C*(c*e - b*f)*(q + 1) - c*(C*e - B*f)*(2*p + 2*q + 3)) + (p + q + 1)*(C*f^2*p*(b^2 -
 4*a*c) - c^2*(C*(e^2 - 4*d*f)*(2*p + q + 2) + f*(2*C*d - B*e + 2*A*f)*(2*p + 2*q + 3))))*x^2, x], x], x] /; F
reeQ[{a, b, c, d, e, f, A, B, C, q}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[e^2 - 4*d*f, 0] && GtQ[p, 0] && NeQ[p +
q + 1, 0] && NeQ[2*p + 2*q + 3, 0] &&  !IGtQ[p, 0] &&  !IGtQ[q, 0]

Rule 1076

Int[((A_.) + (B_.)*(x_) + (C_.)*(x_)^2)/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x
_)^2]), x_Symbol] :> Dist[C/c, Int[1/Sqrt[d + e*x + f*x^2], x], x] + Dist[1/c, Int[(A*c - a*C + (B*c - b*C)*x)
/((a + b*x + c*x^2)*Sqrt[d + e*x + f*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b^2 - 4*a*c
, 0] && NeQ[e^2 - 4*d*f, 0]

Rubi steps

\begin {align*} \int \frac {\left (a+b x+c x^2\right )^{3/2}}{\left (d+e x+f x^2\right )^2} \, dx &=-\frac {(e+2 f x) \left (a+b x+c x^2\right )^{3/2}}{\left (e^2-4 d f\right ) \left (d+e x+f x^2\right )}-\frac {\int \frac {\sqrt {a+b x+c x^2} \left (\frac {1}{2} (3 b e-4 a f)+(3 c e+b f) x+4 c f x^2\right )}{d+e x+f x^2} \, dx}{-e^2+4 d f}\\ &=-\frac {(c e-2 b f-2 c f x) \sqrt {a+b x+c x^2}}{f \left (e^2-4 d f\right )}-\frac {(e+2 f x) \left (a+b x+c x^2\right )^{3/2}}{\left (e^2-4 d f\right ) \left (d+e x+f x^2\right )}-\frac {\int \frac {c f \left (2 b^2 d f+4 a f (c d+a f)-b e (c d+3 a f)\right )-c f \left (2 c^2 d e+2 a c e f+b f (b e-2 a f)+b c \left (e^2-10 d f\right )\right ) x-2 c^3 f \left (e^2-4 d f\right ) x^2}{\sqrt {a+b x+c x^2} \left (d+e x+f x^2\right )} \, dx}{2 c f^2 \left (e^2-4 d f\right )}\\ &=-\frac {(c e-2 b f-2 c f x) \sqrt {a+b x+c x^2}}{f \left (e^2-4 d f\right )}-\frac {(e+2 f x) \left (a+b x+c x^2\right )^{3/2}}{\left (e^2-4 d f\right ) \left (d+e x+f x^2\right )}+\frac {c^2 \int \frac {1}{\sqrt {a+b x+c x^2}} \, dx}{f^2}-\frac {\int \frac {2 c^3 d f \left (e^2-4 d f\right )+c f^2 \left (2 b^2 d f+4 a f (c d+a f)-b e (c d+3 a f)\right )+\left (2 c^3 e f \left (e^2-4 d f\right )-c f^2 \left (2 c^2 d e+2 a c e f+b f (b e-2 a f)+b c \left (e^2-10 d f\right )\right )\right ) x}{\sqrt {a+b x+c x^2} \left (d+e x+f x^2\right )} \, dx}{2 c f^3 \left (e^2-4 d f\right )}\\ &=-\frac {(c e-2 b f-2 c f x) \sqrt {a+b x+c x^2}}{f \left (e^2-4 d f\right )}-\frac {(e+2 f x) \left (a+b x+c x^2\right )^{3/2}}{\left (e^2-4 d f\right ) \left (d+e x+f x^2\right )}+\frac {\left (2 c^2\right ) \operatorname {Subst}\left (\int \frac {1}{4 c-x^2} \, dx,x,\frac {b+2 c x}{\sqrt {a+b x+c x^2}}\right )}{f^2}+\frac {\left ((c e-b f) \left (f (b e-2 a f)+2 c \left (e^2-5 d f\right )\right ) \left (e-\sqrt {e^2-4 d f}\right )-2 f \left (2 c^2 d \left (e^2-4 d f\right )+f \left (2 b^2 d f+4 a f (c d+a f)-b e (c d+3 a f)\right )\right )\right ) \int \frac {1}{\left (e-\sqrt {e^2-4 d f}+2 f x\right ) \sqrt {a+b x+c x^2}} \, dx}{2 f^2 \left (e^2-4 d f\right )^{3/2}}-\frac {\left ((c e-b f) \left (f (b e-2 a f)+2 c \left (e^2-5 d f\right )\right ) \left (e+\sqrt {e^2-4 d f}\right )-2 f \left (2 c^2 d \left (e^2-4 d f\right )+f \left (2 b^2 d f+4 a f (c d+a f)-b e (c d+3 a f)\right )\right )\right ) \int \frac {1}{\left (e+\sqrt {e^2-4 d f}+2 f x\right ) \sqrt {a+b x+c x^2}} \, dx}{2 f^2 \left (e^2-4 d f\right )^{3/2}}\\ &=-\frac {(c e-2 b f-2 c f x) \sqrt {a+b x+c x^2}}{f \left (e^2-4 d f\right )}-\frac {(e+2 f x) \left (a+b x+c x^2\right )^{3/2}}{\left (e^2-4 d f\right ) \left (d+e x+f x^2\right )}+\frac {c^{3/2} \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{f^2}-\frac {\left ((c e-b f) \left (f (b e-2 a f)+2 c \left (e^2-5 d f\right )\right ) \left (e-\sqrt {e^2-4 d f}\right )-2 f \left (2 c^2 d \left (e^2-4 d f\right )+f \left (2 b^2 d f+4 a f (c d+a f)-b e (c d+3 a f)\right )\right )\right ) \operatorname {Subst}\left (\int \frac {1}{16 a f^2-8 b f \left (e-\sqrt {e^2-4 d f}\right )+4 c \left (e-\sqrt {e^2-4 d f}\right )^2-x^2} \, dx,x,\frac {4 a f-b \left (e-\sqrt {e^2-4 d f}\right )-\left (-2 b f+2 c \left (e-\sqrt {e^2-4 d f}\right )\right ) x}{\sqrt {a+b x+c x^2}}\right )}{f^2 \left (e^2-4 d f\right )^{3/2}}+\frac {\left ((c e-b f) \left (f (b e-2 a f)+2 c \left (e^2-5 d f\right )\right ) \left (e+\sqrt {e^2-4 d f}\right )-2 f \left (2 c^2 d \left (e^2-4 d f\right )+f \left (2 b^2 d f+4 a f (c d+a f)-b e (c d+3 a f)\right )\right )\right ) \operatorname {Subst}\left (\int \frac {1}{16 a f^2-8 b f \left (e+\sqrt {e^2-4 d f}\right )+4 c \left (e+\sqrt {e^2-4 d f}\right )^2-x^2} \, dx,x,\frac {4 a f-b \left (e+\sqrt {e^2-4 d f}\right )-\left (-2 b f+2 c \left (e+\sqrt {e^2-4 d f}\right )\right ) x}{\sqrt {a+b x+c x^2}}\right )}{f^2 \left (e^2-4 d f\right )^{3/2}}\\ &=-\frac {(c e-2 b f-2 c f x) \sqrt {a+b x+c x^2}}{f \left (e^2-4 d f\right )}-\frac {(e+2 f x) \left (a+b x+c x^2\right )^{3/2}}{\left (e^2-4 d f\right ) \left (d+e x+f x^2\right )}+\frac {c^{3/2} \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{f^2}-\frac {\left ((c e-b f) \left (f (b e-2 a f)+2 c \left (e^2-5 d f\right )\right ) \left (e-\sqrt {e^2-4 d f}\right )-2 f \left (2 c^2 d \left (e^2-4 d f\right )+f \left (2 b^2 d f+4 a f (c d+a f)-b e (c d+3 a f)\right )\right )\right ) \tanh ^{-1}\left (\frac {4 a f-b \left (e-\sqrt {e^2-4 d f}\right )+2 \left (b f-c \left (e-\sqrt {e^2-4 d f}\right )\right ) x}{2 \sqrt {2} \sqrt {c e^2-2 c d f-b e f+2 a f^2-(c e-b f) \sqrt {e^2-4 d f}} \sqrt {a+b x+c x^2}}\right )}{2 \sqrt {2} f^2 \left (e^2-4 d f\right )^{3/2} \sqrt {c e^2-2 c d f-b e f+2 a f^2-(c e-b f) \sqrt {e^2-4 d f}}}+\frac {\left ((c e-b f) \left (f (b e-2 a f)+2 c \left (e^2-5 d f\right )\right ) \left (e+\sqrt {e^2-4 d f}\right )-2 f \left (2 c^2 d \left (e^2-4 d f\right )+f \left (2 b^2 d f+4 a f (c d+a f)-b e (c d+3 a f)\right )\right )\right ) \tanh ^{-1}\left (\frac {4 a f-b \left (e+\sqrt {e^2-4 d f}\right )+2 \left (b f-c \left (e+\sqrt {e^2-4 d f}\right )\right ) x}{2 \sqrt {2} \sqrt {c e^2-2 c d f-b e f+2 a f^2+(c e-b f) \sqrt {e^2-4 d f}} \sqrt {a+b x+c x^2}}\right )}{2 \sqrt {2} f^2 \left (e^2-4 d f\right )^{3/2} \sqrt {c e^2-2 c d f-b e f+2 a f^2+(c e-b f) \sqrt {e^2-4 d f}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 6.83, size = 2843, normalized size = 4.04 \[ \text {Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*x + c*x^2)^(3/2)/(d + e*x + f*x^2)^2,x]

[Out]

(-2*f*(a + x*(b + c*x))^(3/2))/((e^2 - 4*d*f)*(e - Sqrt[e^2 - 4*d*f] + 2*f*x)) - (2*f*(a + x*(b + c*x))^(3/2))
/((e^2 - 4*d*f)*(e + Sqrt[e^2 - 4*d*f] + 2*f*x)) - (3*f*(a + x*(b + c*x))^(3/2)*(((-4*b*c*f - 2*c*(b*f + 2*c*(
-e + Sqrt[e^2 - 4*d*f])) - 4*c^2*f*x)*Sqrt[a + b*x + c*x^2])/(8*c*f^2) - ((2*Sqrt[c]*(b^2*f^2 + 4*c^2*(e^2 - 2
*d*f - e*Sqrt[e^2 - 4*d*f]) + 4*c*f*(a*f - b*(e - Sqrt[e^2 - 4*d*f])))*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a +
 b*x + c*x^2])])/f + (2*Sqrt[2]*Sqrt[c*e^2 - 2*c*d*f - b*e*f + 2*a*f^2 - c*e*Sqrt[e^2 - 4*d*f] + b*f*Sqrt[e^2
- 4*d*f]]*(4*c*f*(8*a*b*f^2 - 3*b^2*f*(e - Sqrt[e^2 - 4*d*f]) - 4*a*c*f*(e - Sqrt[e^2 - 4*d*f]) + 4*b*c*(e^2 -
 2*d*f - e*Sqrt[e^2 - 4*d*f])) + 4*c*(-e + Sqrt[e^2 - 4*d*f])*(b^2*f^2 + 4*c^2*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d
*f]) + 4*c*f*(a*f - b*(e - Sqrt[e^2 - 4*d*f]))))*ArcTanh[(-4*a*f - b*(-e + Sqrt[e^2 - 4*d*f]) - (2*b*f + 2*c*(
-e + Sqrt[e^2 - 4*d*f]))*x)/(2*Sqrt[2]*Sqrt[c*e^2 - 2*c*d*f - b*e*f + 2*a*f^2 - c*e*Sqrt[e^2 - 4*d*f] + b*f*Sq
rt[e^2 - 4*d*f]]*Sqrt[a + b*x + c*x^2])])/(f*(16*a*f^2 + 8*b*f*(-e + Sqrt[e^2 - 4*d*f]) + 4*c*(-e + Sqrt[e^2 -
 4*d*f])^2)))/(16*c*f^2)))/((e^2 - 4*d*f)*(a + b*x + c*x^2)^(3/2)) + (f*(a + x*(b + c*x))^(3/2)*(((-4*c*f*(4*a
*f - b*(e - Sqrt[e^2 - 4*d*f])) - 2*(b*f - c*(e - Sqrt[e^2 - 4*d*f]))*(b*f + 2*c*(-e + Sqrt[e^2 - 4*d*f])) - 4
*c*f*(b*f - c*(e - Sqrt[e^2 - 4*d*f]))*x)*Sqrt[a + b*x + c*x^2])/(8*c*f^2) - ((-2*(b*f - c*(e - Sqrt[e^2 - 4*d
*f]))*(b^2*f^2 - 4*c^2*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f]) - 4*c*f*(3*a*f - b*(e - Sqrt[e^2 - 4*d*f])))*ArcTan
h[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + b*x + c*x^2])])/(Sqrt[c]*f) + (2*Sqrt[2]*Sqrt[c*e^2 - 2*c*d*f - b*e*f + 2*a*
f^2 - c*e*Sqrt[e^2 - 4*d*f] + b*f*Sqrt[e^2 - 4*d*f]]*(-4*(-e + Sqrt[e^2 - 4*d*f])*(b*f - c*(e - Sqrt[e^2 - 4*d
*f]))*(b^2*f^2 - 4*c^2*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f]) - 4*c*f*(3*a*f - b*(e - Sqrt[e^2 - 4*d*f]))) + 4*f*
(2*c*f*(4*a*f - b*(e - Sqrt[e^2 - 4*d*f]))^2 - (e - Sqrt[e^2 - 4*d*f])*(b*f - c*(e - Sqrt[e^2 - 4*d*f]))*(b^2*
f + 4*a*c*f - 2*b*c*(e - Sqrt[e^2 - 4*d*f]))))*ArcTanh[(-4*a*f - b*(-e + Sqrt[e^2 - 4*d*f]) - (2*b*f + 2*c*(-e
 + Sqrt[e^2 - 4*d*f]))*x)/(2*Sqrt[2]*Sqrt[c*e^2 - 2*c*d*f - b*e*f + 2*a*f^2 - c*e*Sqrt[e^2 - 4*d*f] + b*f*Sqrt
[e^2 - 4*d*f]]*Sqrt[a + b*x + c*x^2])])/(f*(16*a*f^2 + 8*b*f*(-e + Sqrt[e^2 - 4*d*f]) + 4*c*(-e + Sqrt[e^2 - 4
*d*f])^2)))/(16*c*f^2)))/((e^2 - 4*d*f)^(3/2)*(a + b*x + c*x^2)^(3/2)) - (f*(a + x*(b + c*x))^(3/2)*(((4*c*f*(
-4*a*f + b*(e + Sqrt[e^2 - 4*d*f])) + 2*(b*f - c*(e + Sqrt[e^2 - 4*d*f]))*(-(b*f) + 2*c*(e + Sqrt[e^2 - 4*d*f]
)) - 4*c*f*(b*f - c*(e + Sqrt[e^2 - 4*d*f]))*x)*Sqrt[a + b*x + c*x^2])/(8*c*f^2) - ((-2*(b*f - c*(e + Sqrt[e^2
 - 4*d*f]))*(b^2*f^2 - 4*c^2*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f]) - 4*c*f*(3*a*f - b*(e + Sqrt[e^2 - 4*d*f])))*
ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + b*x + c*x^2])])/(Sqrt[c]*f) - (2*Sqrt[2]*Sqrt[c*e^2 - 2*c*d*f - b*e*f
+ 2*a*f^2 + c*e*Sqrt[e^2 - 4*d*f] - b*f*Sqrt[e^2 - 4*d*f]]*(4*(e + Sqrt[e^2 - 4*d*f])*(b*f - c*(e + Sqrt[e^2 -
 4*d*f]))*(b^2*f^2 - 4*c^2*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f]) - 4*c*f*(3*a*f - b*(e + Sqrt[e^2 - 4*d*f]))) +
4*f*(2*c*f*(4*a*f - b*(e + Sqrt[e^2 - 4*d*f]))^2 - (e + Sqrt[e^2 - 4*d*f])*(b*f - c*(e + Sqrt[e^2 - 4*d*f]))*(
b^2*f + 4*a*c*f - 2*b*c*(e + Sqrt[e^2 - 4*d*f]))))*ArcTanh[(4*a*f - b*(e + Sqrt[e^2 - 4*d*f]) - (-2*b*f + 2*c*
(e + Sqrt[e^2 - 4*d*f]))*x)/(2*Sqrt[2]*Sqrt[c*e^2 - 2*c*d*f - b*e*f + 2*a*f^2 + c*e*Sqrt[e^2 - 4*d*f] - b*f*Sq
rt[e^2 - 4*d*f]]*Sqrt[a + b*x + c*x^2])])/(f*(16*a*f^2 - 8*b*f*(e + Sqrt[e^2 - 4*d*f]) + 4*c*(e + Sqrt[e^2 - 4
*d*f])^2)))/(16*c*f^2)))/((e^2 - 4*d*f)^(3/2)*(a + b*x + c*x^2)^(3/2)) + (3*f*(a + x*(b + c*x))^(3/2)*(((4*b*c
*f - 2*c*(-(b*f) + 2*c*(e + Sqrt[e^2 - 4*d*f])) + 4*c^2*f*x)*Sqrt[a + b*x + c*x^2])/(8*c*f^2) - ((-2*Sqrt[c]*(
b^2*f^2 + 4*c^2*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f]) + 4*c*f*(a*f - b*(e + Sqrt[e^2 - 4*d*f])))*ArcTanh[(b + 2*
c*x)/(2*Sqrt[c]*Sqrt[a + b*x + c*x^2])])/f - (2*Sqrt[2]*Sqrt[c*e^2 - 2*c*d*f - b*e*f + 2*a*f^2 + c*e*Sqrt[e^2
- 4*d*f] - b*f*Sqrt[e^2 - 4*d*f]]*(4*c*(e + Sqrt[e^2 - 4*d*f])*(b^2*f^2 + 4*c^2*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*
d*f]) + 4*c*f*(a*f - b*(e + Sqrt[e^2 - 4*d*f]))) + 4*c*f*(3*b^2*f*(e + Sqrt[e^2 - 4*d*f]) + 4*a*c*f*(e + Sqrt[
e^2 - 4*d*f]) - 4*b*(2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f]))))*ArcTanh[(4*a*f - b*(e + Sqrt[e^2 - 4*d
*f]) - (-2*b*f + 2*c*(e + Sqrt[e^2 - 4*d*f]))*x)/(2*Sqrt[2]*Sqrt[c*e^2 - 2*c*d*f - b*e*f + 2*a*f^2 + c*e*Sqrt[
e^2 - 4*d*f] - b*f*Sqrt[e^2 - 4*d*f]]*Sqrt[a + b*x + c*x^2])])/(f*(16*a*f^2 - 8*b*f*(e + Sqrt[e^2 - 4*d*f]) +
4*c*(e + Sqrt[e^2 - 4*d*f])^2)))/(16*c*f^2)))/((e^2 - 4*d*f)*(a + b*x + c*x^2)^(3/2))

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(3/2)/(f*x^2+e*x+d)^2,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(3/2)/(f*x^2+e*x+d)^2,x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Unab
le to divide, perhaps due to rounding error%%%{%%{[-1,0]:[1,0,%%%{-1,[1]%%%}]%%},[8,4,8,0,0,0]%%%}+%%%{%%{[%%%
{16,[1]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[8,4,6,0,1,0]%%%}+%%%{%%{[%%%{-96,[2]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[8
,4,4,0,2,0]%%%}+%%%{%%{[%%%{256,[3]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[8,4,2,0,3,0]%%%}+%%%{%%{[%%%{-256,[4]%%%},
0]:[1,0,%%%{-1,[1]%%%}]%%},[8,4,0,0,4,0]%%%}+%%%{%%%{4,[1]%%%},[7,3,8,1,0,0]%%%}+%%%{%%%{-64,[2]%%%},[7,3,6,1,
1,0]%%%}+%%%{%%%{384,[3]%%%},[7,3,4,1,2,0]%%%}+%%%{%%%{-1024,[4]%%%},[7,3,2,1,3,0]%%%}+%%%{%%%{1024,[5]%%%},[7
,3,0,1,4,0]%%%}+%%%{%%{[4,0]:[1,0,%%%{-1,[1]%%%}]%%},[6,4,8,0,1,0]%%%}+%%%{%%{[%%%{-64,[1]%%%},0]:[1,0,%%%{-1,
[1]%%%}]%%},[6,4,6,0,2,0]%%%}+%%%{%%{[%%%{384,[2]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[6,4,4,0,3,0]%%%}+%%%{%%{[%%%
{-1024,[3]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[6,4,2,0,4,0]%%%}+%%%{%%{[%%%{1024,[4]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%
},[6,4,0,0,5,0]%%%}+%%%{%%{[-2,0]:[1,0,%%%{-1,[1]%%%}]%%},[6,3,9,1,0,0]%%%}+%%%{%%{[%%%{-8,[1]%%%},0]:[1,0,%%%
{-1,[1]%%%}]%%},[6,3,8,0,0,1]%%%}+%%%{%%{[%%%{32,[1]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[6,3,7,1,1,0]%%%}+%%%{%%{[
%%%{128,[2]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[6,3,6,0,1,1]%%%}+%%%{%%{[%%%{-192,[2]%%%},0]:[1,0,%%%{-1,[1]%%%}]%
%},[6,3,5,1,2,0]%%%}+%%%{%%{[%%%{-768,[3]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[6,3,4,0,2,1]%%%}+%%%{%%{[%%%{512,[3]
%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[6,3,3,1,3,0]%%%}+%%%{%%{[%%%{2048,[4]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[6,3,2,0
,3,1]%%%}+%%%{%%{[%%%{-512,[4]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[6,3,1,1,4,0]%%%}+%%%{%%{[%%%{-2048,[5]%%%},0]:[
1,0,%%%{-1,[1]%%%}]%%},[6,3,0,0,4,1]%%%}+%%%{%%{[%%%{-4,[1]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[6,2,8,2,0,0]%%%}+%
%%{%%{[%%%{64,[2]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[6,2,6,2,1,0]%%%}+%%%{%%{[%%%{-384,[3]%%%},0]:[1,0,%%%{-1,[1]
%%%}]%%},[6,2,4,2,2,0]%%%}+%%%{%%{[%%%{1024,[4]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[6,2,2,2,3,0]%%%}+%%%{%%{[%%%{-
1024,[5]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[6,2,0,2,4,0]%%%}+%%%{%%%{8,[1]%%%},[5,3,9,0,0,1]%%%}+%%%{%%%{-12,[1]%
%%},[5,3,8,1,1,0]%%%}+%%%{%%%{-128,[2]%%%},[5,3,7,0,1,1]%%%}+%%%{%%%{192,[2]%%%},[5,3,6,1,2,0]%%%}+%%%{%%%{768
,[3]%%%},[5,3,5,0,2,1]%%%}+%%%{%%%{-1152,[3]%%%},[5,3,4,1,3,0]%%%}+%%%{%%%{-2048,[4]%%%},[5,3,3,0,3,1]%%%}+%%%
{%%%{3072,[4]%%%},[5,3,2,1,4,0]%%%}+%%%{%%%{2048,[5]%%%},[5,3,1,0,4,1]%%%}+%%%{%%%{-3072,[5]%%%},[5,3,0,1,5,0]
%%%}+%%%{%%%{4,[1]%%%},[5,2,9,2,0,0]%%%}+%%%{%%%{16,[2]%%%},[5,2,8,1,0,1]%%%}+%%%{%%%{-64,[2]%%%},[5,2,7,2,1,0
]%%%}+%%%{%%%{-256,[3]%%%},[5,2,6,1,1,1]%%%}+%%%{%%%{384,[3]%%%},[5,2,5,2,2,0]%%%}+%%%{%%%{1536,[4]%%%},[5,2,4
,1,2,1]%%%}+%%%{%%%{-1024,[4]%%%},[5,2,3,2,3,0]%%%}+%%%{%%%{-4096,[5]%%%},[5,2,2,1,3,1]%%%}+%%%{%%%{1024,[5]%%
%},[5,2,1,2,4,0]%%%}+%%%{%%%{4096,[6]%%%},[5,2,0,1,4,1]%%%}+%%%{%%{[-6,0]:[1,0,%%%{-1,[1]%%%}]%%},[4,4,8,0,2,0
]%%%}+%%%{%%{[%%%{96,[1]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[4,4,6,0,3,0]%%%}+%%%{%%{[%%%{-576,[2]%%%},0]:[1,0,%%%
{-1,[1]%%%}]%%},[4,4,4,0,4,0]%%%}+%%%{%%{[%%%{1536,[3]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[4,4,2,0,5,0]%%%}+%%%{%%
{[%%%{-1536,[4]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[4,4,0,0,6,0]%%%}+%%%{%%{[-2,0]:[1,0,%%%{-1,[1]%%%}]%%},[4,3,10
,0,0,1]%%%}+%%%{%%{[6,0]:[1,0,%%%{-1,[1]%%%}]%%},[4,3,9,1,1,0]%%%}+%%%{%%{[%%%{48,[1]%%%},0]:[1,0,%%%{-1,[1]%%
%}]%%},[4,3,8,0,1,1]%%%}+%%%{%%{[%%%{-96,[1]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[4,3,7,1,2,0]%%%}+%%%{%%{[%%%{-448
,[2]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[4,3,6,0,2,1]%%%}+%%%{%%{[%%%{576,[2]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[4,3,
5,1,3,0]%%%}+%%%{%%{[%%%{2048,[3]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[4,3,4,0,3,1]%%%}+%%%{%%{[%%%{-1536,[3]%%%},0
]:[1,0,%%%{-1,[1]%%%}]%%},[4,3,3,1,4,0]%%%}+%%%{%%{[%%%{-4608,[4]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[4,3,2,0,4,1]
%%%}+%%%{%%{[%%%{1536,[4]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[4,3,1,1,5,0]%%%}+%%%{%%{[%%%{4096,[5]%%%},0]:[1,0,%%
%{-1,[1]%%%}]%%},[4,3,0,0,5,1]%%%}+%%%{%%{[-1,0]:[1,0,%%%{-1,[1]%%%}]%%},[4,2,10,2,0,0]%%%}+%%%{%%{[%%%{-24,[1
]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[4,2,9,1,0,1]%%%}+%%%{%%{[%%%{24,[1]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[4,2,8,2,
1,0]%%%}+%%%{%%{[%%%{-16,[2]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[4,2,8,0,0,2]%%%}+%%%{%%{[%%%{384,[2]%%%},0]:[1,0,
%%%{-1,[1]%%%}]%%},[4,2,7,1,1,1]%%%}+%%%{%%{[%%%{-224,[2]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[4,2,6,2,2,0]%%%}+%%%
{%%{[%%%{256,[3]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[4,2,6,0,1,2]%%%}+%%%{%%{[%%%{-2304,[3]%%%},0]:[1,0,%%%{-1,[1]
%%%}]%%},[4,2,5,1,2,1]%%%}+%%%{%%{[%%%{1024,[3]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[4,2,4,2,3,0]%%%}+%%%{%%{[%%%{-
1536,[4]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[4,2,4,0,2,2]%%%}+%%%{%%{[%%%{6144,[4]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},
[4,2,3,1,3,1]%%%}+%%%{%%{[%%%{-2304,[4]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[4,2,2,2,4,0]%%%}+%%%{%%{[%%%{4096,[5]%
%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[4,2,2,0,3,2]%%%}+%%%{%%{[%%%{-6144,[5]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[4,2,1,1
,4,1]%%%}+%%%{%%{[%%%{2048,[5]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[4,2,0,2,5,0]%%%}+%%%{%%{[%%%{-4096,[6]%%%},0]:[
1,0,%%%{-1,[1]%%%}]%%},[4,2,0,0,4,2]%%%}+%%%{%%%{-16,[1]%%%},[3,3,9,0,1,1]%%%}+%%%{%%%{12,[1]%%%},[3,3,8,1,2,0
]%%%}+%%%{%%%{256,[2]%%%},[3,3,7,0,2,1]%%%}+%%%{%%%{-192,[2]%%%},[3,3,6,1,3,0]%%%}+%%%{%%%{-1536,[3]%%%},[3,3,
5,0,3,1]%%%}+%%%{%%%{1152,[3]%%%},[3,3,4,1,4,0]%%%}+%%%{%%%{4096,[4]%%%},[3,3,3,0,4,1]%%%}+%%%{%%%{-3072,[4]%%
%},[3,3,2,1,5,0]%%%}+%%%{%%%{-4096,[5]%%%},[3,3,1,0,5,1]%%%}+%%%{%%%{3072,[5]%%%},[3,3,0,1,6,0]%%%}+%%%{%%%{12
,[1]%%%},[3,2,10,1,0,1]%%%}+%%%{%%%{-8,[1]%%%},[3,2,9,2,1,0]%%%}+%%%{%%%{32,[2]%%%},[3,2,9,0,0,2]%%%}+%%%{%%%{
-208,[2]%%%},[3,2,8,1,1,1]%%%}+%%%{%%%{128,[2]%%%},[3,2,7,2,2,0]%%%}+%%%{%%%{-512,[3]%%%},[3,2,7,0,1,2]%%%}+%%
%{%%%{1408,[3]%%%},[3,2,6,1,2,1]%%%}+%%%{%%%{-768,[3]%%%},[3,2,5,2,3,0]%%%}+%%%{%%%{3072,[4]%%%},[3,2,5,0,2,2]
%%%}+%%%{%%%{-4608,[4]%%%},[3,2,4,1,3,1]%%%}+%%%{%%%{2048,[4]%%%},[3,2,3,2,4,0]%%%}+%%%{%%%{-8192,[5]%%%},[3,2
,3,0,3,2]%%%}+%%%{%%%{7168,[5]%%%},[3,2,2,1,4,1]%%%}+%%%{%%%{-2048,[5]%%%},[3,2,1,2,5,0]%%%}+%%%{%%%{8192,[6]%
%%},[3,2,1,0,4,2]%%%}+%%%{%%%{-4096,[6]%%%},[3,2,0,1,5,1]%%%}+%%%{%%{[4,0]:[1,0,%%%{-1,[1]%%%}]%%},[2,4,8,0,3,
0]%%%}+%%%{%%{[%%%{-64,[1]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[2,4,6,0,4,0]%%%}+%%%{%%{[%%%{384,[2]%%%},0]:[1,0,%%
%{-1,[1]%%%}]%%},[2,4,4,0,5,0]%%%}+%%%{%%{[%%%{-1024,[3]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[2,4,2,0,6,0]%%%}+%%%{
%%{[%%%{1024,[4]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[2,4,0,0,7,0]%%%}+%%%{%%{[4,0]:[1,0,%%%{-1,[1]%%%}]%%},[2,3,10
,0,1,1]%%%}+%%%{%%{[-6,0]:[1,0,%%%{-1,[1]%%%}]%%},[2,3,9,1,2,0]%%%}+%%%{%%{[%%%{-72,[1]%%%},0]:[1,0,%%%{-1,[1]
%%%}]%%},[2,3,8,0,2,1]%%%}+%%%{%%{[%%%{96,[1]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[2,3,7,1,3,0]%%%}+%%%{%%{[%%%{512
,[2]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[2,3,6,0,3,1]%%%}+%%%{%%{[%%%{-576,[2]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[2,3
,5,1,4,0]%%%}+%%%{%%{[%%%{-1792,[3]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[2,3,4,0,4,1]%%%}+%%%{%%{[%%%{1536,[3]%%%},
0]:[1,0,%%%{-1,[1]%%%}]%%},[2,3,3,1,5,0]%%%}+%%%{%%{[%%%{3072,[4]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[2,3,2,0,5,1]
%%%}+%%%{%%{[%%%{-1536,[4]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[2,3,1,1,6,0]%%%}+%%%{%%{[%%%{-2048,[5]%%%},0]:[1,0,
%%%{-1,[1]%%%}]%%},[2,3,0,0,6,1]%%%}+%%%{%%{[-2,0]:[1,0,%%%{-1,[1]%%%}]%%},[2,2,11,1,0,1]%%%}+%%%{%%{[2,0]:[1,
0,%%%{-1,[1]%%%}]%%},[2,2,10,2,1,0]%%%}+%%%{%%{[%%%{-24,[1]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[2,2,10,0,0,2]%%%}+
%%%{%%{[%%%{56,[1]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[2,2,9,1,1,1]%%%}+%%%{%%{[%%%{-36,[1]%%%},0]:[1,0,%%%{-1,[1]
%%%}]%%},[2,2,8,2,2,0]%%%}+%%%{%%{[%%%{384,[2]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[2,2,8,0,1,2]%%%}+%%%{%%{[%%%{-5
76,[2]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[2,2,7,1,2,1]%%%}+%%%{%%{[%%%{256,[2]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[2,
2,6,2,3,0]%%%}+%%%{%%{[%%%{-2304,[3]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[2,2,6,0,2,2]%%%}+%%%{%%{[%%%{2816,[3]%%%}
,0]:[1,0,%%%{-1,[1]%%%}]%%},[2,2,5,1,3,1]%%%}+%%%{%%{[%%%{-896,[3]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[2,2,4,2,4,0
]%%%}+%%%{%%{[%%%{6144,[4]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[2,2,4,0,3,2]%%%}+%%%{%%{[%%%{-6656,[4]%%%},0]:[1,0,
%%%{-1,[1]%%%}]%%},[2,2,3,1,4,1]%%%}+%%%{%%{[%%%{1536,[4]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[2,2,2,2,5,0]%%%}+%%%
{%%{[%%%{-6144,[5]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[2,2,2,0,4,2]%%%}+%%%{%%{[%%%{6144,[5]%%%},0]:[1,0,%%%{-1,[1
]%%%}]%%},[2,2,1,1,5,1]%%%}+%%%{%%{[%%%{-1024,[5]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[2,2,0,2,6,0]%%%}+%%%{%%%{8,[
1]%%%},[1,3,9,0,2,1]%%%}+%%%{%%%{-4,[1]%%%},[1,3,8,1,3,0]%%%}+%%%{%%%{-128,[2]%%%},[1,3,7,0,3,1]%%%}+%%%{%%%{6
4,[2]%%%},[1,3,6,1,4,0]%%%}+%%%{%%%{768,[3]%%%},[1,3,5,0,4,1]%%%}+%%%{%%%{-384,[3]%%%},[1,3,4,1,5,0]%%%}+%%%{%
%%{-2048,[4]%%%},[1,3,3,0,5,1]%%%}+%%%{%%%{1024,[4]%%%},[1,3,2,1,6,0]%%%}+%%%{%%%{2048,[5]%%%},[1,3,1,0,6,1]%%
%}+%%%{%%%{-1024,[5]%%%},[1,3,0,1,7,0]%%%}+%%%{%%%{8,[1]%%%},[1,2,11,0,0,2]%%%}+%%%{%%%{-12,[1]%%%},[1,2,10,1,
1,1]%%%}+%%%{%%%{4,[1]%%%},[1,2,9,2,2,0]%%%}+%%%{%%%{-128,[2]%%%},[1,2,9,0,1,2]%%%}+%%%{%%%{192,[2]%%%},[1,2,8
,1,2,1]%%%}+%%%{%%%{-64,[2]%%%},[1,2,7,2,3,0]%%%}+%%%{%%%{768,[3]%%%},[1,2,7,0,2,2]%%%}+%%%{%%%{-1152,[3]%%%},
[1,2,6,1,3,1]%%%}+%%%{%%%{384,[3]%%%},[1,2,5,2,4,0]%%%}+%%%{%%%{-2048,[4]%%%},[1,2,5,0,3,2]%%%}+%%%{%%%{3072,[
4]%%%},[1,2,4,1,4,1]%%%}+%%%{%%%{-1024,[4]%%%},[1,2,3,2,5,0]%%%}+%%%{%%%{2048,[5]%%%},[1,2,3,0,4,2]%%%}+%%%{%%
%{-3072,[5]%%%},[1,2,2,1,5,1]%%%}+%%%{%%%{1024,[5]%%%},[1,2,1,2,6,0]%%%}+%%%{%%{[-1,0]:[1,0,%%%{-1,[1]%%%}]%%}
,[0,4,8,0,4,0]%%%}+%%%{%%{[%%%{16,[1]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[0,4,6,0,5,0]%%%}+%%%{%%{[%%%{-96,[2]%%%}
,0]:[1,0,%%%{-1,[1]%%%}]%%},[0,4,4,0,6,0]%%%}+%%%{%%{[%%%{256,[3]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[0,4,2,0,7,0]
%%%}+%%%{%%{[%%%{-256,[4]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[0,4,0,0,8,0]%%%}+%%%{%%{[-2,0]:[1,0,%%%{-1,[1]%%%}]%
%},[0,3,10,0,2,1]%%%}+%%%{%%{[2,0]:[1,0,%%%{-1,[1]%%%}]%%},[0,3,9,1,3,0]%%%}+%%%{%%{[%%%{32,[1]%%%},0]:[1,0,%%
%{-1,[1]%%%}]%%},[0,3,8,0,3,1]%%%}+%%%{%%{[%%%{-32,[1]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[0,3,7,1,4,0]%%%}+%%%{%%
{[%%%{-192,[2]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[0,3,6,0,4,1]%%%}+%%%{%%{[%%%{192,[2]%%%},0]:[1,0,%%%{-1,[1]%%%}
]%%},[0,3,5,1,5,0]%%%}+%%%{%%{[%%%{512,[3]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[0,3,4,0,5,1]%%%}+%%%{%%{[%%%{-512,[
3]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[0,3,3,1,6,0]%%%}+%%%{%%{[%%%{-512,[4]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[0,3,2
,0,6,1]%%%}+%%%{%%{[%%%{512,[4]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[0,3,1,1,7,0]%%%}+%%%{%%{[-1,0]:[1,0,%%%{-1,[1]
%%%}]%%},[0,2,12,0,0,2]%%%}+%%%{%%{[2,0]:[1,0,%%%{-1,[1]%%%}]%%},[0,2,11,1,1,1]%%%}+%%%{%%{[-1,0]:[1,0,%%%{-1,
[1]%%%}]%%},[0,2,10,2,2,0]%%%}+%%%{%%{[%%%{16,[1]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[0,2,10,0,1,2]%%%}+%%%{%%{[%%
%{-32,[1]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[0,2,9,1,2,1]%%%}+%%%{%%{[%%%{16,[1]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[
0,2,8,2,3,0]%%%}+%%%{%%{[%%%{-96,[2]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[0,2,8,0,2,2]%%%}+%%%{%%{[%%%{192,[2]%%%},
0]:[1,0,%%%{-1,[1]%%%}]%%},[0,2,7,1,3,1]%%%}+%%%{%%{[%%%{-96,[2]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[0,2,6,2,4,0]%
%%}+%%%{%%{[%%%{256,[3]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[0,2,6,0,3,2]%%%}+%%%{%%{[%%%{-512,[3]%%%},0]:[1,0,%%%{
-1,[1]%%%}]%%},[0,2,5,1,4,1]%%%}+%%%{%%{[%%%{256,[3]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[0,2,4,2,5,0]%%%}+%%%{%%{[
%%%{-256,[4]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[0,2,4,0,4,2]%%%}+%%%{%%{[%%%{512,[4]%%%},0]:[1,0,%%%{-1,[1]%%%}]%
%},[0,2,3,1,5,1]%%%}+%%%{%%{[%%%{-256,[4]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[0,2,2,2,6,0]%%%} / %%%{%%%{1,[1]%%%}
,[8,2,0,0,0,0]%%%}+%%%{%%{poly1[%%%{-4,[1]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[7,1,0,1,0,0]%%%}+%%%{%%%{-4,[1]%%%}
,[6,2,0,0,1,0]%%%}+%%%{%%%{2,[1]%%%},[6,1,1,1,0,0]%%%}+%%%{%%%{8,[2]%%%},[6,1,0,0,0,1]%%%}+%%%{%%%{4,[2]%%%},[
6,0,0,2,0,0]%%%}+%%%{%%{poly1[%%%{-8,[1]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[5,1,1,0,0,1]%%%}+%%%{%%{poly1[%%%{12,
[1]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[5,1,0,1,1,0]%%%}+%%%{%%{poly1[%%%{-4,[1]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[5
,0,1,2,0,0]%%%}+%%%{%%{poly1[%%%{-16,[2]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[5,0,0,1,0,1]%%%}+%%%{%%%{6,[1]%%%},[4
,2,0,0,2,0]%%%}+%%%{%%%{2,[1]%%%},[4,1,2,0,0,1]%%%}+%%%{%%%{-6,[1]%%%},[4,1,1,1,1,0]%%%}+%%%{%%%{-16,[2]%%%},[
4,1,0,0,1,1]%%%}+%%%{%%%{1,[1]%%%},[4,0,2,2,0,0]%%%}+%%%{%%%{24,[2]%%%},[4,0,1,1,0,1]%%%}+%%%{%%%{-8,[2]%%%},[
4,0,0,2,1,0]%%%}+%%%{%%%{16,[3]%%%},[4,0,0,0,0,2]%%%}+%%%{%%{poly1[%%%{16,[1]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[
3,1,1,0,1,1]%%%}+%%%{%%{poly1[%%%{-12,[1]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[3,1,0,1,2,0]%%%}+%%%{%%{poly1[%%%{-1
2,[1]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[3,0,2,1,0,1]%%%}+%%%{%%{poly1[%%%{8,[1]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[
3,0,1,2,1,0]%%%}+%%%{%%{poly1[%%%{-32,[2]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[3,0,1,0,0,2]%%%}+%%%{%%{poly1[%%%{16
,[2]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[3,0,0,1,1,1]%%%}+%%%{%%%{-4,[1]%%%},[2,2,0,0,3,0]%%%}+%%%{%%%{-4,[1]%%%},
[2,1,2,0,1,1]%%%}+%%%{%%%{6,[1]%%%},[2,1,1,1,2,0]%%%}+%%%{%%%{8,[2]%%%},[2,1,0,0,2,1]%%%}+%%%{%%%{2,[1]%%%},[2
,0,3,1,0,1]%%%}+%%%{%%%{-2,[1]%%%},[2,0,2,2,1,0]%%%}+%%%{%%%{24,[2]%%%},[2,0,2,0,0,2]%%%}+%%%{%%%{-24,[2]%%%},
[2,0,1,1,1,1]%%%}+%%%{%%%{4,[2]%%%},[2,0,0,2,2,0]%%%}+%%%{%%{poly1[%%%{-8,[1]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[
1,1,1,0,2,1]%%%}+%%%{%%{poly1[%%%{4,[1]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[1,1,0,1,3,0]%%%}+%%%{%%{poly1[%%%{-8,[
1]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[1,0,3,0,0,2]%%%}+%%%{%%{poly1[%%%{12,[1]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[1,
0,2,1,1,1]%%%}+%%%{%%{poly1[%%%{-4,[1]%%%},0]:[1,0,%%%{-1,[1]%%%}]%%},[1,0,1,2,2,0]%%%}+%%%{%%%{1,[1]%%%},[0,2
,0,0,4,0]%%%}+%%%{%%%{2,[1]%%%},[0,1,2,0,2,1]%%%}+%%%{%%%{-2,[1]%%%},[0,1,1,1,3,0]%%%}+%%%{%%%{1,[1]%%%},[0,0,
4,0,0,2]%%%}+%%%{%%%{-2,[1]%%%},[0,0,3,1,1,1]%%%}+%%%{%%%{1,[1]%%%},[0,0,2,2,2,0]%%%} Error: Bad Argument Valu
e

________________________________________________________________________________________

maple [B]  time = 0.04, size = 72576, normalized size = 103.09 \[ \text {output too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^2+b*x+a)^(3/2)/(f*x^2+e*x+d)^2,x)

[Out]

result too large to display

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (c x^{2} + b x + a\right )}^{\frac {3}{2}}}{{\left (f x^{2} + e x + d\right )}^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(3/2)/(f*x^2+e*x+d)^2,x, algorithm="maxima")

[Out]

integrate((c*x^2 + b*x + a)^(3/2)/(f*x^2 + e*x + d)^2, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\left (c\,x^2+b\,x+a\right )}^{3/2}}{{\left (f\,x^2+e\,x+d\right )}^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x + c*x^2)^(3/2)/(d + e*x + f*x^2)^2,x)

[Out]

int((a + b*x + c*x^2)^(3/2)/(d + e*x + f*x^2)^2, x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**2+b*x+a)**(3/2)/(f*x**2+e*x+d)**2,x)

[Out]

Timed out

________________________________________________________________________________________